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Motivation

e Top quark couples strongly to the Higgs sector and a good probe of new physics.

* The top mass is the dominant source of theoretical uncertainty in EWPO:s.

* Typically the uncertainty in the extracted Higgs mass
will be limited by the uncertainty in the top mass.
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* Good reasons to measure the top mass with high
precision.
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What are we Measuring?

* What is the top mass?

k=1

e Top is a colored parton. Cannot define physical on-shell mass.
e Top mass is a parameter of the Lagrangian.
e Top mass parameter is scheme dependent.
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¢ For better precision we need a short distance top mass.

e How can we extract a short distance mass? Which mass?
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Observables

* What is a suitable top mass observable?

® Clear and well defined relation to a short distance mass.
® Good signal to background ratio.

Threshold Scan

® Physics well understood
* NRQCD is the appropriate EFT.

e Well defined relation to short distance mass.
¢ Backgrounds well understood.

dm!" ~ 100MeV (Hoang Manohar, Stewart, Teubner,...)

Jet Reconstruction

* Many open theoretical & experimental questions

e Relation to short distance mass.
¢ Backgrounds,...
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Jet Reconstruction Issues

* Suitable jet observable with clear relation to a short distance mass. *

e Final state soft radiation. *

¢ Initial state soft radiation.

* Initial state PDFs. *IS;UGIng“&leI?;éO
the

* Jet Energy Scale. *

® Beam Remnants.

® Underlying Events.



Pair Production of Top Jets
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Jet Observable Sensitive to Top Mass

* Focus on the dijet region where the top and antitop
jets have invariant masses close to the top mass.

* The top and antitop jets are detined to have the
Iinvariant masses:

Mt, M{

* The jet invariant mass condition is characterized as:

§t,f: — NF<<m

* The jet observable of interest is the double differential jet invariant mass
distribution:
do

AMZ dM2




Tree Level Breit Wigner Curves?

e A first guess might be that the distribution is a product of Breit Wigner curves.

20

50

d?o

d \Y, d S7 Itree level

100

50

20

100

507

507

~0.04  -0.02 ~ 0.02  0.04 -0.04

e We will find that this is not always true even at tree level due to nonperturbative

effects.

e Furthermore large logarithms can affect these curves.
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Relevant Energy Scales

* Center of mass energy Q~ 1TeV

e Top quark mass m ~ 174GeV
e Top quark width [~ 2GeV

* Confinement Scale A ~ 500MeV

Disparate energy scales = FEffective Field Theory!



Ettective Field Theories



Kinematics for Top Jets: 1

e High Energy Condition: Top quark pairs are produced with a center of mass
energy much larger than the top mass

Q) >m

* In this limit one can treat top quarks as collinear degrees of freedom in the

Soft Collinear Effective Theory (SCET) (Bauer, Fleming, Luke, Pirjol, Stewart).



Kinematics for Top Jets: 11

® [nvariant Mass Condition: We characterize on shell production by the
requirement:

M —m* Sml

* This condition looks like the invariant mass constraint on a heavy quark in

Heavy Quark Eftective Theory (HQET) (Isgur, Wise,...).

e HQET has been generalized to unstable particles(Beneke, Chapovsky, Signer,
Zanderighi).



Group Photo of Effective Field Theories

QCD Q

Integrate out
—
l Hard Modes Q
n n

Factorize Jets, Integrate

SCET m out energetic collinear —> SCET i C
gluons . I %
l Evolution and . r
decay of top —>» Soft antitop ‘
close to mass shell < Cross-Talk > HQET

HQET B



The QCD Cross-Section



The QCD Cross-Section

O «<—We are here.

® The cross-section in QCD has the general form :

...... ° 2 rt .
o = Y (2m)" 6 (pe + pe —px) D LU (01T(0)1X) (X]J/(0)]0)

X ij
® The sum over final states X is restricted to contain a top jet and an anti-top

jet with invariant masses close to the top mass.

* The top quark currents are produced by photon and Z exchange:

Ji(x) = p(x)ip(x), L5 = A", TG = gV + gyt



Matching QCD Current onto SCET

* We restrict the tinal state phase space to high energy top quark pairs by
matching the QCD current onto the SCET current :

J; (0) = /dw di C(w, w, 1) T (w, 0, p1)

A A A

QCD Wilson Coeff. SCET

Zu(waaj? ,U) — Xn,w(O)Ff; ﬁ,w(o) , Xn,w(o) — 5(w—75)(WT§n)(O)

A

Jet field

e By momentum conservation, the relevant Wilson coefficient that survives is

* In this step of matching, the hard modes of QCD are integrated out.



Matching QCD onto SCET at One Loop
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e Note that the logs in the Wilson coetficient vanish by choosing the matching
scale at : = Q



The SCET Cross-Section



The SCET Cross-Section

e After matching the QCD current onto SCET, the cross-section has the
general form :

Tres.
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* The complete set of states in SCET involve only soft and collinear degrees
of freedom.

|X> — ‘XnXﬁXS> — |Xn> o ‘Xﬁ> o ‘XS>

/T A

Collinear: 11 Collinear: 71 Soft



Factorized Cross Section in SCET
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Hard Wilson coeff. Collinear: Collinear: n

* Need to be specific about jet invariant mass definitions to make restrictions
over final states explicit.

* We use Hemisphere mass definition and make the invariant mass restrictions
explicit.



Hemisphere Masses

* The jet masses are defined to be the mass of all particles in each hemisphere
perpendicular to the thrust axis as shown below.

left hemisphere right hemisphere

Collinear

d

Thrust
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The Hemisphere Scenario: Jet Invariant Masses

e The total soft momentum of the final state is the sum of the soft
momentum in each hemisphere

_1.a b A . b
sz_ks+ks, Paz|\Xs>_kg|Xs>a;6|Xs>_ks|X8>
Hemisphere soft momenta Hemisphere Projection Operators

* The invariant mass of each jet is defined to be

Mt2 = (Px, + /‘CS)Q MEQ — (Px, + k)7

)

e Make the invariant mass restrictions explicit by inserting the identity operator

] = /de 6 ((pn + K2)* — MP) /de 5((pn + k) — M?)
B /de O((pn +k5)* —m* — ) /thz 5((pn + k)% — m® — s7)

..>OME ALGEBRA...



SCET Cross-section

* |In the hemisphere scenario the SCET cross section takes the form:
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nonperturbative
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* The same soft function appears in massless dijets(Korchemsky & Sterman; Bauer,
Lee, Manohar, Wise).



Running in SCET: Top Down vs. Bottom Up



Who Wants to Run?

d?o >0
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Run the jet and soft
functions:

Bottom Up
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* Scale independence of the cross-section requires the equivalence of top down
and bottom up running. This provides a check on the consistency of the jet

invariant mass definition.




Anomalous Dimensions

Top Down:

Ye(p) = —Zgl(u)u@Zc(u)

Bottom Up:
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Evolution

Top Down

Hq(Q, 1) = Uny (11, pon) Ho(Q, in)
Bottom Up
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Equivalence of Top Down vs Bottom Up

Top Down Bottom Up Scal
Running Running e
(s — QU m, T, )
Ho(Q, 1)
J n (S F — Q I , 1T, I’ ,u
Loca}l S [ (€ L/ Convolution
Running Running
m

* Running between (Q and m is local and only aftfects normalization.



Matching onto HQET

e Recall the big picture:

* Need to match SCET jet
m  «<——We are here. functions onto HQET and
run below m.

Soft
Cross-Talk "~ >

Order m invariant mass
fluctuations remain Nonperturbative

N l

( do ) — 00 HQ(Q?M)/d€+d€ (St - Q€+ m qu ‘]_ St QZ m F?M)Sheml(g_'_ €_7/L)
hema

~. |

Match and run Run below m
in HQET




Boosted HQET



Decoupled Boosted HQET Sectors

Top HQET
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The SCET and BHQET Jet Functions

* The SCET jet functions are given by:

—1
J.(Qr —m?®) = d*z """ Disc { O\T{XnQ (0)7xn () }0)
2m()
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e The BHQET jet function are given by:
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One Loop Matching of SCET onto BHQET
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* Matching SCET jet functions onto bHQET:
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* Note that the logs in the Wilson coefficient vanish by choosing scale:

p=m



Final Form of Differential Cross-Section

Hard Production

modes integrated “Hard” collinear
| integrated out
out SIUONS 1hiteghated ou Evolution and decay Non-
of top quark close to perturbative
mass shell Cross talk
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Running in bHQET: Top Down vs Bottom Up



Who Wants to Run?
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Anomalous Dimensions
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Evolution

Top Down

Hm(:u) = Up,, (,u, Mm)Hm(Mm)

Bottom Up
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Consistency of top down & bottom up
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Equivalence of Top-Down vs. Bottom Up

Top Down Bottom Up Scalos
Running Running
Jo(se — Q0T ,m,T, )
Ho(Q,
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unning
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Local + . |
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e Running between the different scales only atfects only the normalization!



Short Distance Mass for Jets



Connecting the Observable to a Short Distance Mass Scheme

d*o @,
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* We have an analytic formula for the double differential jet invariant mass
distribution in terms of the pole mass.

* We can now switch to a short distance mass scheme in bHQET.

Mpole = M + 0N



Switching Mass Schemes in bHQET

Top HQET Anti-Top HQET
_ 7 _ 0
Ly = hy, (w+ - Dy —om + §I’)h L_=h, (w_ -D_ —om + §I’)hv_

(A

* Power counting in bHQET requires
0, ~ §t = §{ ~ [

* Note that this power counting breaks down in the MS scheme:
om ~ a.m > T

* We need a short distance mass that respects the power counting of bHQET.



Short Distance Top Jet Mass

0.3

* Define the short distance top jet mass
scheme as:

02 F

dB_|_(§, L, 5mJ) _ 0 o1 |
ds 3=0
* In the jet mass scheme the NLO jet function Perturbative Stability of (GeV)

1s modified as: Peak Position at NLO.
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* At NLO the jet mass is related to the pole mass scheme as follows:
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Invariant Mass Distribution: Analysis



Jet and Soft Functions

* Jet functions are Breit Wigner distributions at tree level:
1 I’

mm §2 + 12

B*°(3,T) =

* Use shape tunction extracted from massless dijets (Korchemsky & Sterman):
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Tree level BWs Shape function



Double Ditterential Invariant Mass Distribution

d*o @,
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. / “detde- B, (gt Q. M) B_ (g,; Ay M) Shemi (7,07, 1)

— OO

* Measured peak position is shifted away
from the short distance mass value due to
the nonperturbative soft function.

* Naive Breit Wigner fit not valid even at
tree level.




NonPerturbative Effects in Single Ditferential Distribution

175 ¢ Peak Position versus Q/m
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o Peak position shifts linearly with the center of mass energy.

e Width of distribution also shifts linearly with center of mass energy.



Other Event Shapes



Thrust Distribution

* The thrust variable is related to the jet invariant masses as:
_ 2 2\ /)2
1 =T = (M; + M)/

e Using the above relation one can obtain the thrust distribution:
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Conclusions

e We have developed an analytic framework that gives a clear and well detined
relation between the short distance top mass and reconstruction from jets:

* We define a new short distance mass suitable for reconstruction from jets.

® Peak position is shifted away from the short distance top mass value by universal nonperturbative effects.
® The shift is linear in the center of mass energy.

® The width of the distribution also grows linearly with energy.

® Large logarithms only affect the overall normalization of the distribution.

o EFT approach allows for factorization, power corrections, resummation, and
universal characterization of non-perturbative effects.

* One can generalize this approach for different jet algorithms especially those suited
for the LHC and work is in progress.



